Виды реакций
Виды реакций:Все химические реакции подразделяют на простые и сложные. Простые химические реакции, в свою очередь, обычно подразделяют на четыре типа: реакции соединения, реакции разложения, реакции замещения и реакции обмена.
Д. И. Менделеев определял соединение как реакцию, «при которой из двух веществ происходит одно. Примером химической реакции соединения может служить нагревание порошков железа и серы, - при этом образуется сульфид железа: Fe+S=FeS. К реакциям соединения относят процессы горения простых веществ (серы, фосфора, углерода,...) на воздухе. Например, углерод горит на воздухе С+О2=СО2 (конечно эта реакция протекает постепенно, сначала образуется угарный газ СО). Реакции горения всегда сопровождаются выделением тепла — являются экзотермическими.
Химические реакции разложения, по Менделееву, «составляют случаи, обратные соединению, то есть такие, при которых одно вещество даёт два, или, вообще, данное число веществ — большее их число. Примером реакции разложение меже служить химическая реакция разложения мела (или известняка под воздействием температуры): СаСО3→ СаО+СО2. Для проведения реакции разложения, как правило, требуется нагревание. Такие процессы — эндотермические, т. е. протекают с поглощением теплоты.
В реакциях двух других типов число реагентов равно числу продуктов. Если взаимодействуют простое вещество и сложное —то эта химическая реакция называется химической реакцией замещения: Например опустив стальной гвоздь в раствор медного купороса получаем железный купорос (здесь железо вытеснило медь из её соли) Fe+CuSO4→ FeSO4+Cu.
Реакции между двумя сложными веществами, при которых они обмениваются своими частями, относят к химическим реакциям обмена. Большое их число протекает в водных растворах. Примером химической реакции обмена может служить нейтрализация кислоты щёлочью: NaOH+HCl→ NaCl+Н2О. Здесь в реагентах (веществах, стоящих слева) ион водорода из соединения HCl обменивается с ионом натрия из соединения NaOH, в результате чего образуется раствор поваренной соли в воде
Типы реакций и их механизмы приведены в таблице:
химические реакции соединения A + B = AB Пример: Из нескольких простых или сложных веществ образуется одно сложное |
химические реакции разложения AB = A + B Пример: Из сложного вещества образуется несколько простых или сложных веществ |
химические реакции замещения A + BC =AC + B Пример: Атом простого вещества замещает один из атомов сложного |
химические реакции ионного обмена AB+CD = AD+CB Пример: Сложные вещества обмениваются своими составными частями |
Однако очень многие реакции не укладываются в приведённую простую схему. Например, химическая реакция между перманганатом калия (марганцовкой) и иодидом натрия не может быть отнесена ни к одному из указанных типов. Такие реакции, обычно, называют окислительно - восстановительные реакции, например:
2KMnO4+10NaI+8H2SO4→ 2MnSO4+K2SO4+5Na2SO4+5I2+8H2O.
Признаки химических реакций
Признаки химических реакций. По ним можно судить, прошла ли химическая реакция между реагентами или нет. К таким признакам принято относить следующие:
- Изменение цвета (например, светлое железо покрывается во влажном воздухе бурым налётом оксида железа - химическая реакция взаимодействия железа с
кислородом).
- Выпадение осадка (например, если через известковый раствор (раствор гидроксида кальция) пропустить
углекислый газ, выпадет белый нерастворимый осадок карбоната кальция).
- Выделение газа (например, если капнуть лимонной кислотой на пищевую соду, то выделится углекислый
газ).
- Образование слабодиссоциированных веществ (например, реакции, при которых одним из продуктов
реакции является вода).
- Свечение раствора.
Примером свечения раствора может служить реакция с использованием такого реагента как раствор
люминола (люминол- это сложное химическое вещество, которое может излучать свет при химических
реакциях).
Окислительно-восстановительные реакции
Окислительно-восстановительные реакции - составляют особый класс химических реакций. Их характерной особенностью является изменение степени окисления, по крайней мере, пары атомов: окисление одного (потеря электронов) и восстановление другого (присоединение электронов).
Сложные вещества, понижающие свою степень окисления - окислители, а повышающие степень окисления - восстановители. Например:
2Na + Cl2→ 2NaCl,
- здесь окислитель - хлор (он присоединяет к себе электроны),
а
восстановитель - натрий (он отдаёт электроны).
Реакция замещения NaBr-1+ Cl20→ 2NaCl-1 + Br20 (характерна для галогенов) тоже относится к окислительно -восстановительным реакциям. Здесь хлор - окислитель (принимает 1 электрон), а бромид натрия (NaBr) - восстановитель (атом брома отдаёт электрон).
Реакция разложения дихромата аммония ((NH4)2Cr2O7) тоже относится к окислительно-восстановительным реакциям:
(N-3H4)2Cr2+6O7→ N20 + Cr2+3O3 + 4H2O
Ещё одна из распространённых классификаций химических реакций - это их разделение по тепловому эффекту. Разделяют эндотермические реакции и экзотермические реакции. Эндотермические реакции - химические реакции, сопровождающиеся поглощением окружающего тепла (вспомните охлаждающие смеси). Экзотермические (наоборот) - химические реакции, сопровождающиеся выделением тепла (например - горение).
Опасные химические реакции :"БОМБА В РАКОВИНЕ"- забавно или не очень?!
Существуют некоторые химические реакции, которые протекают спонтанно при смешивании реагентов. При
этом образуются достаточно опасные смеси, которые могут взрываться, воспламеняться или отравлять.
Вот одна и них!
В некоторых американских и английских клиниках наблюдались странные явления. Время от времени из
раковин раздавались звуки, напоминающие пистолетные выстрелы, а в одном случае неожиданно взорвалась
сливная трубка. К счастью, никто не пострадал. Расследование показало, что виновником всего этого
был очень слабый (0,01%) раствор азида натрия NaN3, который использовали в качестве
консерванта физиологических растворов.
Излишки раствора азида в течение многих месяцев, а то и лет сливали в раковины — иногда до 2 л в день.
Сам по себе азид натрия — соль азидоводородной кислоты HN3 — не взрывается. Однако азиды тяжёлых металлов (меди, серебра, ртути, свинца и др.) — весьма неустойчивые кристаллические соединения, которые взрываются при трении, ударе, нагревании, действии света. Взрыв может произойти даже под слоем воды! Азид свинца Pb(N3)2 используется как инициирующее взрывчатое вещество, с помощью которого подрывают основную массу взрывчатки. Для этого достаточно всего двух десятков миллиграммов Pb(N3)2. Это соединение более взрывчато, чем нитроглицерин, а скорость детонации (распространения взрывной волны) при взрыве достигает 45 км/с — в 10 раз больше, чем у тротила.
Но откуда в клиниках могли взяться азиды тяжёлых металлов? Оказалось, во всех случаях сливные трубки под раковинами были изготовлены из меди или латуни (такие трубки легко гнутся, особенно после нагревания, поэтому их удобно устанавливать в сливной системе). Выливаемый в раковины раствор азида натрия, протекая по таким трубкам, постепенно реагировал с их поверхностью, образуя азид меди. Пришлось менять трубки на пластмассовые. Когда в одной из клиник проводили такую замену, оказалось, что снятые медные трубки сильно забиты твёрдым веществом. Специалисты, которые занимались «разминированием», чтобы не рисковать, подорвали эти трубки на месте, сложив их в металлический бак массой 1 т. Взрыв был настолько силён, что сдвинул бак на несколько сантиметров!
Медиков не очень интересовала сущность химических реакций, приводящих к образованию взрывчатки. В химической литературе также не удалось найти описания этого процесса. Но можно предположить, исходя из сильных окислительных свойств HN3, что имела место такая реакция: анион N-3, окисляя медь, образовал одну молекулу N2 и атом азота, который вошёл в состав аммиака. Это соответствует уравнению реакции: 3NaN3+Cu+3Н2О→ Cu(N3)2+3NaOH+N2+NH3.
С опасностью образования бомбы в раковине приходится считаться всем, кто имеет дело с растворимыми азидами металлов, в том числе и химикам, поскольку азиды используются для получения особо чистого азота, в органическом синтезе, в качестве порообразователя (вспенивающего агента для производства газонаполненных материалов: пенопластов, пористой резины и т. п.). Во всех подобных случаях надо проследить, чтобы сливные трубки были пластмассовыми.
Сравнительно недавно азиды нашли новое применение в автомобилестроении. В 1989 г. в некоторых моделях американских автомобилей появились надувные подушки безопасности. Такая подушка, содержащая азид натрия, в сложенном виде почти незаметна. При лобовом столкновении электрический запал приводит к очень быстрому разложению азида: 2NaN3=2Na+3N2. 100 г порошка выделяют около 60 л азота, который примерно за 0,04 с надувает подушку перед грудью водителя, спасая тем самым ему жизнь.
Потемневшая бронзовая монета, помещённая в фанту на несколько часов, снова станет блестящей!